0% Complete
صفحه اصلی
/
International Conference on Artificial Intelligence; City, Industry and Health
Smart Access: Artificial Intelligence-Enhanced Vein Assessment for Improved Peripheral Intravenous Catheter Placement in Pediatric Oncology- A Conceptual Design
نویسندگان :
Faridokht Yazdani
1
1- Nursing and Midwifery Sciences Development Research Center, Na.C., Islamic Azad University, Najafabad, Iran
کلمات کلیدی :
Artificial intelligence،multimodal imaging،pediatric oncology،personalized medicine،peripheral intravenous catheter placement
چکیده :
Peripheral intravenous catheter (PIVC) placement in pediatric oncology patients is a challenging procedure due to anatomical and physiological complexities, leading to high failure rates, patient distress, and procedural delays. This conceptual study introduces "Smart Access," an Artificial Intelligence (AI)-enhanced vein assessment system designed to improve PIVC placement success rates through predictive analytics and multimodal imaging integration. The system leverages machine learning algorithms trained on pediatric venous anatomy datasets to identify optimal vein sites with high precision, combining ultrasound and infrared imaging for comprehensive visualization. Additionally, its adaptive learning capabilities refine recommendations based on clinical feedback, ensuring personalized care for diverse patient profiles. By reducing procedural variability, enhancing clinician confidence, and minimizing patient discomfort, "Smart Access" aligns with the principles of patient-centered care and procedural efficiency. While the proposed framework demonstrates significant potential, future research must focus on prototype development, clinical validation, and addressing challenges related to data availability, cost optimization, and workflow integration. This study highlights the transformative potential of AI-driven solutions in procedural medicine and sets a foundation for advancing PIVC placement standards in pediatric oncology.
لیست مقالات
لیست مقالات بایگانی شده
Forecasting Electricity Price Spikes in Competitive Markets Using a Hybrid Deep Learning Framework with SHAP and Grey Wolf Optimization
Hossein Shahinzadeh - Hamed Nafisi - Mahtab Bagheri - Saiedeh Mehrabani-Najafabadi - Sudeep Tanwar - Francisco Jurado
Simulation and Analysis of Energy Consumption Reduction Using Event-Triggered Fault-Tolerant Control
Fatemeh Gholami - Mahnaz Hashemi - Ghazanfar Shahgholian
معضلات توسعه دستگاه های استخراج رمزارز در کاهش بهینه سازی مصرف انرژی
احسان آقاباباگلی
Economic evaluation of energy reduction in smart buildings using wireless sensor networks
Hussein Asaad Shakir Al-Khalaf - Rahmat Aazami - Mohammadamin Shirkhani
تعیین خط افزونه با رویکرد بهبود تاب آوری ، توسعه و تقویت ظرفیت خط و باس شبکه انتقال
احمد که کشان - میثم علیمردانی فر - زهرا قوی دست - فرید کعبی
Evaluating AI Diagnostic Tools for Use in Remote Medical Settings
Zahra Abiri
Comparison of the use of two methods of artificial intelligence and Case Base Learning on clinical decision-making of medical students
Arezoo Vasili - Hamid Reza Nikyar - Ramtin Akbari
Effects of DG Sources on Distribution Network's Harmonics, Simulation Analysis and Comparison
Hamidreza Amiri
The Application of Artificial Intelligence in Predicting and Mitigating the Effects of Climate Change: Challenges and Solutions
Hadi Mahmoudi - Masoud Raei Dehqi - Alireza Ansari Mehiyari
روشهای بهینه وصول مطالبات و ارائه پیشنهادات و راهکارهای اقتصاد مقاومتی برای وصول آن در شرکت توزیع نیروی برق استان یزد
مجتبی طواری - جابر ابراهیمی - حسن شایق
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.6.0