0% Complete
صفحه اصلی
/
International Conference on Artificial Intelligence; City, Industry and Health
Long-term Prediction of Coronary Artery Disease Using Logistic Regression
نویسندگان :
Koosha Mardasi
1
Nasim Noorafza
2
1- Department of Computer Engineering, Na.C, Islamic Azad University, Najafabad, Iran
2- Department of Computer Engineering, Na.C, Islamic Azad University, Najafabad, Iran
کلمات کلیدی :
cardiovascular،coronary artery disease،logistic regression،naive bayes،machine learning
چکیده :
This study addresses long-term coronary artery disease(CAD) prediction by presenting a noninvasive, machine learning framework that primarily employs Logistic Regression, with a comparative analysis against Naive Bayes. Utilizing extensive clinical datasets, our approach begins with rigorous data preprocessing applying median imputation for missing values and filtering individuals aged in a specific range. A dual feature selection strategy, combining mutual information analysis with an XGBoost-based relevance ranking, is implemented to isolate the most predictive variables. To counteract class imbalance, the SMOTEENN algorithm is applied alongside stratified sampling and normalization. The logistic regression model is optimized using grid search and cross-validation, ensuring robust performance. Comparative evaluations demonstrate that, while Naive Bayes offers a simpler model with certain advantages, Logistic Regression provides superior interpretability and clinical relevance, allowing for clearer assessment of individual risk factors such as smoking. Overall, the proposed framework offers a cost-effective and reliable tool for early CAD detection and risk stratification, thereby supporting enhanced clinical decision-making in precision cardiovascular medicine
لیست مقالات
لیست مقالات بایگانی شده
Comparison of the use of two methods of artificial intelligence and Case Base Learning on clinical decision-making of medical students
Arezoo Vasili - Hamid Reza Nikyar - Ramtin Akbari
The Role of Modern Urbanization in Optimizing Energy Distribution Networks in Urban Areas with the Approach of Internet of Things and Smart City
Meysam Rezaei - Fereshte Ahmadi - Elham Nazemi - Amirhossein Shabani Shahreza
تحلیل مقایسهای اینورترهای خورشیدی: بررسی تأثیر شرایط محیطی، هزینه بر عملکرد و راندمان سامانههای فتوولتائیک
علی فرج زاده - مجید محمدیان - امین علیان - محمد جبیری
AI-Driven Solutions for Electricity Fraud Detection: A Data-Centric Approach
Fatemeh Alimoradi - Zahra Alimoradi - S. Mohammadali Zanjani - Ghazanfar Shahgholian
Customer Churn Prediction in the Telecommunications Industry Using Machine Learning Techniques
Atefeh Ahmadi Jazi - Nasim Noorafza
مروری بر سیستم مدیریت انرژی تجدیدپذیر ترکیبی مبتنی بر انرژی های بادی و خورشیدی
احسان آقاباباگلی
Artificial Intelligence in the Diagnosis and Prognosis of Neurodegenerative Disorders: A Systematic Review of Algorithms, Challenges, and Future Directions
Donya Forghani - Mohamad Shahgholi
Smart Access: Artificial Intelligence-Enhanced Vein Assessment for Improved Peripheral Intravenous Catheter Placement in Pediatric Oncology- A Conceptual Design
Faridokht Yazdani
Forecasting Electricity Price Spikes in Competitive Markets Using a Hybrid Deep Learning Framework with SHAP and Grey Wolf Optimization
Hossein Shahinzadeh - Hamed Nafisi - Mahtab Bagheri - Saiedeh Mehrabani-Najafabadi - Sudeep Tanwar - Francisco Jurado
An Electric Vehicle Parking Model for Optimization of Power Fluctuation Smoothing in Distribution Systems Equipped with Renewable Energy Resources
محسن جنتی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.6.0