0% Complete
صفحه اصلی
/
International Conference on Artificial Intelligence; City, Industry and Health
Personalizing Large Language Models: A Deep Dive into Adaptation Strategies
نویسندگان :
Negin Dehkhoda
1
Hamid Rastagari
2
1- Department of Computer Engineering, Na.C., Islamic Azad University, Najafabad, Iran
2- Department of Computer Engineering, Na.C., Islamic Azad University, Najafabad, Iran
کلمات کلیدی :
Large Language Models (LLMs)،Retrieval-Augmented Generation،Parameter-Efficient Fine-Tuning،Personalization
چکیده :
Large Language Models (LLMs) have revolutionized Artificial Intelligence, with advanced capabilities across diverse applications. However, a significant challenge remains: how to personalize these models to meet specific user needs. Personalization is crucial in scenarios where tailored outputs are required, such as in industries where LLMs are deployed for tasks like customer service automation, personalized marketing, and decision support. In these contexts, the ability to adapt LLMs to specific user behaviors and organizational requirements can lead to better user engagement, increased operational efficiency, and enhanced decision-making. Researchers have explored two main strategies to achieve personalization: prompt-based methods and fine-tuning approaches. Prompt-based methods integrate user-specific content through dynamic prompts without modifying the underlying model parameters, offering cost-effective and flexible solutions. However, they struggle with capturing complex user behaviors over time. Fine-tuning, on the other hand, modifies the model’s parameters to better encode user-specific patterns, providing deeper customization at the cost of higher computational resources and data requirements. This review evaluates the strengths and limitations of both approaches and examines emerging techniques such as Retrieval-Augmented prompting and Parameter-Efficient Fine-Tuning, which aim to strike a balance between personalization, scalability, and industrial application.
لیست مقالات
لیست مقالات بایگانی شده
Sleep Disorder Diagnosis Using EEG Signals and LSTM Deep Learning Method
Mohammad Reza Yousefi - Reza Rahimi
حفاظت فرکانس در ریزشبکه های جزیره ای در برابر اغتشاشات وارده به کمک کنترل کننده بهینه شده با الگوریتم ژنتیک
محسن دلفانی - حمیدرضا بهمنی
Examining the Role of Artificial Intelligence in Curriculum Development
Mohammad Hossein Kazemi Darafshani - Mahbobe Hojjati
مقایسه کارایی کنترلهای فازی و PID در کاهش ریپل و نوسانات ناخواسته در کنترل رباتهای دو لینک انعطافپذیر
مصطفی مکی شهرضایی - عباس چترائی
A new method for calculating maximum solubility in solid state with AI: the case study of the Al-Zr system
Saeid Jabbarzare
AI-Powered Optimization of Magnesium Phosphate Bone Cements for Patient-Specific Orthopedic Outcomes
Mehran Shafiei - Mohamad Shahgholi
Explainability as a Learning Tool: Leveraging Transparent AI to Foster Self-Regulated Learning in Smart Education Environments
Maryam Nooraei Abadeh - Shohreh Ajoudanian
The impact of smart transportation on the mental health of urban drivers (Case study: District 22, Tehran)
Somayeh Valikhani - Fereshteh Ahmadi - Amir hosein Shabani - Mohammad Askarian
Bridging the Gap: Understanding Adult Learners' Fear of AI in Language Classrooms and How to Overcome It
Bahareh Assarzadegan - Oimd Tabatabaei - Ali Yousefi
Predictive Modeling of Pollutant Emissions from Biodiesel-diesel Fuel Blends in a Diesel Engine Using Artificial Neural Networks
Alireza Shirneshan
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.6.0