0% Complete
صفحه اصلی
/
International Conference on Artificial Intelligence; City, Industry and Health
Personalizing Large Language Models: A Deep Dive into Adaptation Strategies
نویسندگان :
Negin Dehkhoda
1
Hamid Rastagari
2
1- Department of Computer Engineering, Na.C., Islamic Azad University, Najafabad, Iran
2- Department of Computer Engineering, Na.C., Islamic Azad University, Najafabad, Iran
کلمات کلیدی :
Large Language Models (LLMs)،Retrieval-Augmented Generation،Parameter-Efficient Fine-Tuning،Personalization
چکیده :
Large Language Models (LLMs) have revolutionized Artificial Intelligence, with advanced capabilities across diverse applications. However, a significant challenge remains: how to personalize these models to meet specific user needs. Personalization is crucial in scenarios where tailored outputs are required, such as in industries where LLMs are deployed for tasks like customer service automation, personalized marketing, and decision support. In these contexts, the ability to adapt LLMs to specific user behaviors and organizational requirements can lead to better user engagement, increased operational efficiency, and enhanced decision-making. Researchers have explored two main strategies to achieve personalization: prompt-based methods and fine-tuning approaches. Prompt-based methods integrate user-specific content through dynamic prompts without modifying the underlying model parameters, offering cost-effective and flexible solutions. However, they struggle with capturing complex user behaviors over time. Fine-tuning, on the other hand, modifies the model’s parameters to better encode user-specific patterns, providing deeper customization at the cost of higher computational resources and data requirements. This review evaluates the strengths and limitations of both approaches and examines emerging techniques such as Retrieval-Augmented prompting and Parameter-Efficient Fine-Tuning, which aim to strike a balance between personalization, scalability, and industrial application.
لیست مقالات
لیست مقالات بایگانی شده
Network Anomaly Detection Using Artificial Intelligence Algorithms
Sajad Balali Dehkordi - Saeed Nasri - Sina Dami
پایش وضعیت آلاینده های زیست محیطی ناشی از مصرف سوخت جایگزین و بررسی اثرات آن بر تولید و راندمان توربین گازی
فرشته صادقی - داوود ثمنی مقدم
Reconfiguration of Electrical Distribution Systems in the Presence of Distributed Generation Resources Using MINLP
Azadeh Barani - Majid Moazzami - Ghazanfar Shahgholian - Fariborz Haghighatdar
پیاده سازی شتاب دهنده شبکه های عصبی کانولوشن بر روی FPGA
احسان قربانی - مهدی آمون
نقش مقابله با تلفات غیرفنی در افزایش بهینه سازی انرژی
احسان آقاباباگلی
حفاظت فرکانس در ریزشبکه های جزیره ای در برابر اغتشاشات وارده به کمک کنترل کننده بهینه شده با الگوریتم ژنتیک
محسن دلفانی - حمیدرضا بهمنی
PIMA: Power Imbalance Management Agent as a Distributed Supply Chain Management System
Paniz MohsenNia - Saeed Kafshdouzzadeh - Ehsan Shahi - Amirreza Khanzadeh Khaneqah - Alireza Fereidunian
Smart Xs as the Umbrella Term for the Decentralized Integration Paradigm: An Energy View to Ambient Intelligence, Smart Environments, IoT and Energy Harvesting for Self-Poweredness
َََAlireza Fereidunian - Zahra Alimoradi
Evaluating AI Diagnostic Tools for Use in Remote Medical Settings
Zahra Abiri
Energy Imbalance: Challenges, Opportunities, and Solutions
Ali Hosseinzadeh - Mohamadreza Hashemi - Mahsa Hamidi - Mehdi Oloomi Bayegi - Mostafa Eidiani
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.4