0% Complete
صفحه اصلی
/
International Conference on Artificial Intelligence; City, Industry and Health
Personalizing Large Language Models: A Deep Dive into Adaptation Strategies
نویسندگان :
Negin Dehkhoda
1
Hamid Rastagari
2
1- Department of Computer Engineering, Na.C., Islamic Azad University, Najafabad, Iran
2- Department of Computer Engineering, Na.C., Islamic Azad University, Najafabad, Iran
کلمات کلیدی :
Large Language Models (LLMs)،Retrieval-Augmented Generation،Parameter-Efficient Fine-Tuning،Personalization
چکیده :
Large Language Models (LLMs) have revolutionized Artificial Intelligence, with advanced capabilities across diverse applications. However, a significant challenge remains: how to personalize these models to meet specific user needs. Personalization is crucial in scenarios where tailored outputs are required, such as in industries where LLMs are deployed for tasks like customer service automation, personalized marketing, and decision support. In these contexts, the ability to adapt LLMs to specific user behaviors and organizational requirements can lead to better user engagement, increased operational efficiency, and enhanced decision-making. Researchers have explored two main strategies to achieve personalization: prompt-based methods and fine-tuning approaches. Prompt-based methods integrate user-specific content through dynamic prompts without modifying the underlying model parameters, offering cost-effective and flexible solutions. However, they struggle with capturing complex user behaviors over time. Fine-tuning, on the other hand, modifies the model’s parameters to better encode user-specific patterns, providing deeper customization at the cost of higher computational resources and data requirements. This review evaluates the strengths and limitations of both approaches and examines emerging techniques such as Retrieval-Augmented prompting and Parameter-Efficient Fine-Tuning, which aim to strike a balance between personalization, scalability, and industrial application.
لیست مقالات
لیست مقالات بایگانی شده
Comparison of the use of two methods of artificial intelligence and Case Base Learning on clinical decision-making of medical students
Arezoo Vasili - Hamid Reza Nikyar - Ramtin Akbari
The Evolution of Smart Grids: Decentralization, Communication, and Economic Impact
Saiedeh Mehrabani-Najafabadi - Hossein Shahinzadeh - Hamed Nafisi - Shohreh Azani - Ehsan Etemadnia - Ali Karimi
Enhancing Multilingual Spam Detection Using Machine Learning and Synthetic Data Augmentation
Mohamad Hosein Ghojavand - Hamid Rastegari
اثر تصحیح خطای مثبت ترانسفورماتورهای ولتاژ خازنی بر بهینهسازی مصرف انرژی و کاهش هزینههای برق در شرکت فولاد خوزستان
علی سالم دزفولی - محمود جورابیان - ناصر حمیدی - مجتبی آزادی اردکانی
Artificial Intelligence in the Diagnosis and Prognosis of Neurodegenerative Disorders: A Systematic Review of Algorithms, Challenges, and Future Directions
Donya Forghani - Mohamad Shahgholi
Energy-Efficient Intelligent Platforms for Public Safety Radio Networks: Optimizing Electrical Energy Consumption in Emergency Communication Systems
Mohammad Asgari
روشهای بهینه وصول مطالبات و ارائه پیشنهادات و راهکارهای اقتصاد مقاومتی برای وصول آن در شرکت توزیع نیروی برق استان یزد
مجتبی طواری - جابر ابراهیمی - حسن شایق
Artificial Intelligence, Armed Conflict, and the International Obligations of States
Masoud Raei Dehaghi
AI-Powered Optimization of Magnesium Phosphate Bone Cements for Patient-Specific Orthopedic Outcomes
Mehran Shafiei - Mohamad Shahgholi
Ethical Challenges of Future Schools with the Application of Artificial Intelligence
Fereshteh Karimi - Mahbobe Hojjati
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.6.0