0% Complete
صفحه اصلی
/
International Conference on Artificial Intelligence; City, Industry and Health
A Review of Machine Learning Methods for Autism Diagnosis
نویسندگان :
Ali Emami
1
Nasim Noorafza
2
1- Department of Computer Engineering, Na.C, Islamic Azad University, Najafabad, Iran
2- Department of Computer Engineering, Na.C, Islamic Azad University, Najafabad, Iran
کلمات کلیدی :
Autism Spectrum Disorder،Ensemble Methods،Machine Learning،Machine Learning in Medicine
چکیده :
Autism Spectrum Disorder (ASD) is a neurological condition characterized by difficulties in social interactions, communication, and repetitive behaviors. Although its primary cause is genetic, early detection is critically important, and the application of machine learning offers a promising solution for faster and more cost-effective diagnosis. However, studies in the field of ASD diagnosis using machine learning face several challenges. One major limitation is the reliance on single models, which often struggle to simultaneously capture the complex features of autism due to limited generalizability. In addition, many classification models depend on labeled data, and their performance significantly degrades when the data is noisy or of small volume. Moreover, most machine learning methods—especially those based on single algorithms—are unable to integrate information from different aspects of the data. In contrast, combining multiple perspectives can enhance the accuracy and robustness of detection. Given these limitations, the use of ensemble methods, which combine multiple machine learning models to leverage the strengths of each, presents an effective solution. In this paper, we review classical and standalone machine learning methods, and finally, we present our proposed approach.
لیست مقالات
لیست مقالات بایگانی شده
Hybrid Lithium-Ion Portable Renewable Energy Storage System (ESS)
Amirhossein Rahimian Zarif - Seyed Amirreza Ghorab Baygi - Yasser Mafinejad
A Deep Learning-based Strategy for Bronchitis Detection in Online Telehealth Platforms
Saeideh Mehrabani
Simulation and Analysis of Energy Consumption Reduction Using Event-Triggered Fault-Tolerant Control
Fatemeh Gholami - Mahnaz Hashemi - Ghazanfar Shahgholian
Personalizing Large Language Models: A Deep Dive into Adaptation Strategies
Negin Dehkhoda - Hamid Rastagari
تحلیل مقایسهای اینورترهای خورشیدی: بررسی تأثیر شرایط محیطی، هزینه بر عملکرد و راندمان سامانههای فتوولتائیک
علی فرج زاده - مجید محمدیان - امین علیان - محمد جبیری
Forecasting Electricity Price Spikes in Competitive Markets Using a Hybrid Deep Learning Framework with SHAP and Grey Wolf Optimization
Hossein Shahinzadeh - Hamed Nafisi - Mahtab Bagheri - Saiedeh Mehrabani-Najafabadi - Sudeep Tanwar - Francisco Jurado
Explainability as a Learning Tool: Leveraging Transparent AI to Foster Self-Regulated Learning in Smart Education Environments
Maryam Nooraei Abadeh - Shohreh Ajoudanian
معضلات توسعه دستگاه های استخراج رمزارز در کاهش بهینه سازی مصرف انرژی
احسان آقاباباگلی
بهینه سازی عملکرد سنسورهای مگنتومیتر سه محوره حساس برای تشخیص جریانهای الکتریکی بسیار ضعیف در پنل های خورشیدی
سعید جعفری - نجمه چراغی شیرازی
Network Anomaly Detection Using Artificial Intelligence Algorithms
Sajad Balali Dehkordi - Saeed Nasri - Sina Dami
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.4