0% Complete
صفحه اصلی
/
ششمین کنفرانس بین المللی بهینه سازی مصرف انرژی الکتریکی
Forecasting Electricity Price Spikes in Competitive Markets Using a Hybrid Deep Learning Framework with SHAP and Grey Wolf Optimization
نویسندگان :
Hossein Shahinzadeh
1
Hamed Nafisi
2
Mahtab Bagheri
3
Saiedeh Mehrabani-Najafabadi
4
Sudeep Tanwar
5
Francisco Jurado
6
1- دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران)
2- دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران)
3- دانشگاه آزاد اسلامی واحد نجف آباد
4- دانشگاه آزاد اسلامی واحد نجف آباد
5- Nirma University - India
6- University of Jaén - Spain
کلمات کلیدی :
Electricity Price Spike Forecasting،Deep Learning،SHAP Feature Importance Analysis،Recursive Feature Elimination (RFE)،Convolutional Neural Network (CNN)،Grey Wolf Optimization (GWO)
چکیده :
Accurate electricity price forecasting in competitive markets is crucial for both producers and consumers. Given the complexity and extreme volatility of electricity prices, predicting the occurrence and magnitude of price spikes is a significant challenge. This paper presents a novel hybrid strategy based on deep learning and the Grey Wolf Optimization (GWO) algorithm for forecasting both the occurrence and magnitude of electricity price spikes. In this approach, an initial feature analysis is conducted using the SHAP (SHapley Additive exPlanations) importance index to eliminate less influential features. Subsequently, a Convolutional Neural Network (CNN) is employed to extract complex features and identify spike patterns in time series data. The Recursive Feature Elimination (RFE) algorithm is applied to optimize input features. Finally, GWO is utilized to optimize the CNN weights for accurate spike magnitude prediction. The proposed method is evaluated using real-world electricity market data, and the results demonstrate its high accuracy in forecasting both the occurrence and magnitude of electricity price spikes.
لیست مقالات
لیست مقالات بایگانی شده
AI in Education: To Be or Not to Be? That is the Question
Mhadi Rezaei - Hadi Salehi
معضلات توسعه دستگاه های استخراج رمزارز در کاهش بهینه سازی مصرف انرژی
احسان آقاباباگلی
Bibliometric Analysis of Artificial Intelligence Applications in Smart Cities with an Emphasis on Resource Management and Sustainability
Reyhaneh Bidram - Somayeh Salehi
مقایسه کارایی کنترلهای فازی و PID در کاهش ریپل و نوسانات ناخواسته در کنترل رباتهای دو لینک انعطافپذیر
مصطفی مکی شهرضایی - عباس چترائی
Smart Access: Artificial Intelligence-Enhanced Vein Assessment for Improved Peripheral Intravenous Catheter Placement in Pediatric Oncology- A Conceptual Design
Faridokht Yazdani
Impacts of Placement and Control Modes of Large-Scale PV Systems on the Steady-State Performance of the IEEE 39-Bus
Mohammadreza Azizi - Amirreza Rezaei
A Optimal Design Standalone PV-Battery System for Rural Electrification from Techno-economic Analysis Perspectives: A Case Study from Khorasan Razavi Province
Sina Sajadi - Mohammadreza Fatehi - Mohammadreza Amiri - Seyed hossein Hosseinian
نقش مقابله با تلفات غیرفنی در افزایش بهینه سازی انرژی
احسان آقاباباگلی
حفاظت فرکانس در ریزشبکه های جزیره ای در برابر اغتشاشات وارده به کمک کنترل کننده بهینه شده با الگوریتم ژنتیک
محسن دلفانی - حمیدرضا بهمنی
Applications of Artificial Intelligence in Remote Diagnosis and Treatment in Healthcare
Mina Pourmbarak Mahanaie - Fatemeh Ansari
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.4