0% Complete
صفحه اصلی
/
International Conference on Artificial Intelligence; City, Industry and Health
Customer Churn Prediction in the Telecommunications Industry Using Machine Learning Techniques
نویسندگان :
Atefeh Ahmadi Jazi
1
Nasim Noorafza
2
1- Department of Computer Engineering, Na.C, Islamic Azad University, Najafabad, Iran
2- Department of Computer Engineering, Na.C, Islamic Azad University, Najafabad, Iran
کلمات کلیدی :
Customer churn prediction،Machine learning،Data mining،Hybrid models،Deep networks،Data balancing
چکیده :
Customer churn is a key challenge in the telecommunications industry, directly affecting the profitability and growth of organizations. The significance of customer churn prediction can be examined from various aspects, including high customer acquisition costs, implementing effective customer retention strategies, continuously improving services and products, and enhancing financial efficiency and competitiveness. Accurate and timely prediction of this phenomenon enables companies to take proactive measures and maintain customer satisfaction. This review paper examines algorithms and machine learning techniques used in predicting customer churn. Findings from past studies indicate that hybrid methods and machine learning play a significant role in improving prediction accuracy. Additionally, the existing challenges and opportunities are analyzed, and future directions in this domain are proposed.
لیست مقالات
لیست مقالات بایگانی شده
Automated Metaphor Identification: Applying Artificial Intelligence to MIP for detecting Emotion-Related Conceptual Metaphors in Philip Caputo’s A Rumor of War
Parivash Esmaeili
A Comparative Study of Emotion Detection Methods Using NLP Techniques on Sentiment140 and IMDb Datasets
Bahar Asgari - Hamid Rastegari - Vahid Nejati
Evaluating AI Diagnostic Tools for Use in Remote Medical Settings
Zahra Abiri
جلوگیری از ایجاد تلفات در تجهیزات پستهای برق با کمک تصویر برداری حرارتی
احسان مهرابی
Intelligent food packaging with modern food technology and artificial intelligence field
Aazam Aarabi
The Smarter Grid: An Incremental Energy Transition Framework through an Argumentation Theory Discourse Analysis
Alireza Fereidunian - Mohammadhossein Tamimi - Ehsan ُShahi
حفاظت فرکانس در ریزشبکه های جزیره ای در برابر اغتشاشات وارده به کمک کنترل کننده بهینه شده با الگوریتم ژنتیک
محسن دلفانی - حمیدرضا بهمنی
مروری بر سیستم مدیریت انرژی تجدیدپذیر ترکیبی مبتنی بر انرژی های بادی و خورشیدی
احسان آقاباباگلی
Long-term Prediction of Coronary Artery Disease Using Logistic Regression
Koosha Mardasi - Nasim Noorafza
Smart Xs as the Umbrella Term for the Decentralized Integration Paradigm: An Energy View to Ambient Intelligence, Smart Environments, IoT and Energy Harvesting for Self-Poweredness
َََAlireza Fereidunian - Zahra Alimoradi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.6.0