0% Complete
صفحه اصلی
/
International Conference on Artificial Intelligence; City, Industry and Health
Data-Driven Finger Selection for Nailfold Capillaroscopy in SLE Using Unsupervised Learning and Diagnostic Scoring
نویسندگان :
Habibollah Jafari
1
Abdolamir Karbalaie
2
1- Department of Computer Engineering, Na.C., Islamic Azad University, Najafabad, Iran
2- Department of Community Medicine and Rehabilitation, Umeå University, Sweden SE-901 87, Umeå, Sweden
کلمات کلیدی :
Capillaroscopy،Unsupervised Learning،Systemic Lupus Erythematosus،K-Means،Diagnostic Scoring
چکیده :
Objective: Identify latent microvascular phenotypes in SLE patients via unsupervised machine learning and determine the most diagnostically representative fingers for capillaroscopy. Methods: Capillaroscopic features from eight fingers per SLE patient were analyzed using PCA and K-Means clustering. A composite scoring system ranked fingers by abnormality severity, redundancy, variability, missingness, and diagnostic weight. Results: Unsupervised clustering revealed two distinct groups: fingers with pronounced microvascular changes versus minor abnormalities. Three fingers consistently ranked highest in diagnostic utility: the left middle, right middle, and right ring fingers. These exhibited frequent, prominent abnormalities with minimal redundancy, while other digits offered overlapping or less critical data. Conclusion: Data-driven analysis identifies the left middle, right middle, and right ring fingers as optimal for SLE capillaroscopy. Focusing on these three digits may improve detection of microvascular pathology while enhancing clinical efficiency, streamlining assessments without compromising diagnostic yield.
لیست مقالات
لیست مقالات بایگانی شده
The Integration of Artificial Intelligence in Strategic Thinking: Models and Dimensions
Seid Mohammad Reza Mirahmadi - Naser Khani
Economic Dispatch of Microgrid with Renewable DGs
Kiarash Pourramezani - Hamid Reza Baghaee - Gevork B. Gharehpetian
معضلات توسعه دستگاه های استخراج رمزارز در کاهش بهینه سازی مصرف انرژی
احسان آقاباباگلی
Optimization of Electric Vehicle Charging Station Placement Using V2G Technology and Intelligent Algorithms
ABBAS SEIF - Hamid Radmanesh
A multi-objective mathematical model to optimize the consumption of electric power in the N.I.O.P.D.C
Forough Hamidizadeh - Atefeh Amindoust - Seyed Mohammadali Zanjani - Alireza Sanei
پیاده سازی شتاب دهنده شبکه های عصبی کانولوشن بر روی FPGA
احسان قربانی - مهدی آمون
نقش اقتصادی یراق کمربندی در بهسازی سکوی تابلوها و ترانسفورماتورهای هوایی و شبکه های هوایی
ابراهیم گوگونانی - حمیدرضا شهبازی - محسن سلیمی - متین گوگونانی - احمد آقاجانی
Intelligent Tracking of a Combine Harvester by an Autonomous Tractor-Trailer in Crop Harvesting Operations
Khoshnam Shojaei
Distribution Network Reconfiguration in the Presence of Distribution Generation Using Deep Reinforcement Learning
Amirhossein Ghaemipour - Habib Rajabi Mashhadi - Seyed Hossein Mostafavi
بهینه سازی عملکرد سنسورهای مگنتومیتر سه محوره حساس برای تشخیص جریانهای الکتریکی بسیار ضعیف در پنل های خورشیدی
سعید جعفری - نجمه چراغی شیرازی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.4