0% Complete
صفحه اصلی
/
International Conference on Artificial Intelligence; City, Industry and Health
Data-Driven Finger Selection for Nailfold Capillaroscopy in SLE Using Unsupervised Learning and Diagnostic Scoring
نویسندگان :
Habibollah Jafari
1
Abdolamir Karbalaie
2
1- Department of Computer Engineering, Na.C., Islamic Azad University, Najafabad, Iran
2- Department of Community Medicine and Rehabilitation, Umeå University, Sweden SE-901 87, Umeå, Sweden
کلمات کلیدی :
Capillaroscopy،Unsupervised Learning،Systemic Lupus Erythematosus،K-Means،Diagnostic Scoring
چکیده :
Objective: Identify latent microvascular phenotypes in SLE patients via unsupervised machine learning and determine the most diagnostically representative fingers for capillaroscopy. Methods: Capillaroscopic features from eight fingers per SLE patient were analyzed using PCA and K-Means clustering. A composite scoring system ranked fingers by abnormality severity, redundancy, variability, missingness, and diagnostic weight. Results: Unsupervised clustering revealed two distinct groups: fingers with pronounced microvascular changes versus minor abnormalities. Three fingers consistently ranked highest in diagnostic utility: the left middle, right middle, and right ring fingers. These exhibited frequent, prominent abnormalities with minimal redundancy, while other digits offered overlapping or less critical data. Conclusion: Data-driven analysis identifies the left middle, right middle, and right ring fingers as optimal for SLE capillaroscopy. Focusing on these three digits may improve detection of microvascular pathology while enhancing clinical efficiency, streamlining assessments without compromising diagnostic yield.
لیست مقالات
لیست مقالات بایگانی شده
Analyzing Symptom Patterns of COVID 19 Using Apriori Association Rule Mining
Hasti Mokhtari Karchegani - Homa Movahednejad - Mahdi Sharifi
Automated Metaphor Identification: Applying Artificial Intelligence to MIP for detecting Emotion-Related Conceptual Metaphors in Philip Caputo’s A Rumor of War
Parivash Esmaeili
تبیین جامعه شناختی مصرف انرژی الکتریکی (بازنگری سامانمند پژوهش های پیرامون مصرف انرژی الکتریکی)
کمال سعیدی - مژگان سعیدی
Reconfigurable Pulse Charge BMS with Pre-charge Capability for Li-Ion Energy Storage Systems (ESSs)
Amirhossein Rahimian Zarif - Amin Kazemi - Yasser Mafinejad
Simulation of the Effect of Combining LFC and AVR in a Thermal Power Plant With Reheat Turbine
S. Mohammadali Zanjani - Majid Moazzami - Majid Dehghani - Farhad Faghani - Ghazanfar Shahgholian
نقش مقابله با تلفات غیرفنی در افزایش بهینه سازی انرژی
احسان آقاباباگلی
Network Anomaly Detection Using Artificial Intelligence Algorithms
Sajad Balali Dehkordi - Saeed Nasri - Sina Dami
A Review of Machine Learning Methods for Autism Diagnosis
Ali Emami - Nasim Noorafza
The Discourse of Artificial Intelligence and the Fourth Generation of Human Rights
Masoud Raei - Mahsa Khajeh - Mehdi Abdolmaleki
Enhanced Frequency Regulation in Islanded Microgrids Using a Machine Learning-Assisted Linear-Quadratic Regulator
Soheil Ebrahimian - Hossein Shahinzadeh - Hamed Nafisi - Mahtab Bagheri - Majid Moazzami - Zohreh Azani
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.0.1