0% Complete
صفحه اصلی
/
International Conference on Artificial Intelligence; City, Industry and Health
Data-Driven Finger Selection for Nailfold Capillaroscopy in SLE Using Unsupervised Learning and Diagnostic Scoring
نویسندگان :
Habibollah Jafari
1
Abdolamir Karbalaie
2
1- Department of Computer Engineering, Na.C., Islamic Azad University, Najafabad, Iran
2- Department of Community Medicine and Rehabilitation, Umeå University, Sweden SE-901 87, Umeå, Sweden
کلمات کلیدی :
Capillaroscopy،Unsupervised Learning،Systemic Lupus Erythematosus،K-Means،Diagnostic Scoring
چکیده :
Objective: Identify latent microvascular phenotypes in SLE patients via unsupervised machine learning and determine the most diagnostically representative fingers for capillaroscopy. Methods: Capillaroscopic features from eight fingers per SLE patient were analyzed using PCA and K-Means clustering. A composite scoring system ranked fingers by abnormality severity, redundancy, variability, missingness, and diagnostic weight. Results: Unsupervised clustering revealed two distinct groups: fingers with pronounced microvascular changes versus minor abnormalities. Three fingers consistently ranked highest in diagnostic utility: the left middle, right middle, and right ring fingers. These exhibited frequent, prominent abnormalities with minimal redundancy, while other digits offered overlapping or less critical data. Conclusion: Data-driven analysis identifies the left middle, right middle, and right ring fingers as optimal for SLE capillaroscopy. Focusing on these three digits may improve detection of microvascular pathology while enhancing clinical efficiency, streamlining assessments without compromising diagnostic yield.
لیست مقالات
لیست مقالات بایگانی شده
Forecasting Electricity Price Spikes in Competitive Markets Using a Hybrid Deep Learning Framework with SHAP and Grey Wolf Optimization
Hossein Shahinzadeh - Hamed Nafisi - Mahtab Bagheri - Saiedeh Mehrabani-Najafabadi - Sudeep Tanwar - Francisco Jurado
Network Anomaly Detection Using Artificial Intelligence Algorithms
Sajad Balali Dehkordi - Saeed Nasri - Sina Dami
Predictive Modeling of Pollutant Emissions from Biodiesel-diesel Fuel Blends in a Diesel Engine Using Artificial Neural Networks
Alireza Shirneshan
Smart Xs as the Umbrella Term for the Decentralized Integration Paradigm: An Energy View to Ambient Intelligence, Smart Environments, IoT and Energy Harvesting for Self-Poweredness
َََAlireza Fereidunian - Zahra Alimoradi
مروری بر سیستم مدیریت انرژی تجدیدپذیر ترکیبی مبتنی بر انرژی های بادی و خورشیدی
احسان آقاباباگلی
Impact of Using ChatGPT as an AI Tool on Speaking Complexity, Accuracy, and Fluency Among Iranian EFL Learners
Samira Beheshti - Omid Tabatabaei - Hadi Salehi
Investigating the impact of anti-reflective coatings on enhancing the efficiency of InAlGaP solar cells
Shokoufeh Rasan - Zahra Alaei Vernosfaderani - Mehdi Riahinasab - S. Mohammadali Zanjani
Artificial Intelligence in Finance and Business: Applications in Risk Management and Fraud Detection
Fatemeh Ansari - Mehdi Joudan
نقش انرژیهای نو در توسعه هوشمند و پایدار شهری
زهرا حسنی - فرشته احمدی
The Smarter Grid: An Incremental Energy Transition Framework through an Argumentation Theory Discourse Analysis
Alireza Fereidunian - Mohammadhossein Tamimi - Ehsan ُShahi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.6.0