0% Complete
صفحه اصلی
/
International Conference on Artificial Intelligence; City, Industry and Health
AI-Powered Optimization of Magnesium Phosphate Bone Cements for Patient-Specific Orthopedic Outcomes
نویسندگان :
Mehran Shafiei
1
Mohamad Shahgholi
2
1- Department of Mechanical Engineering, Na.C., Islamic Azad University, Najafabad, Iran
2- Department of Mechanical Engineering, Na.C., Islamic Azad University, Najafabad, Iran
کلمات کلیدی :
Artificial Intelligence،Machine Learning،Magnesium Phosphate Bone Cements،Patient-Specific Design،Personalized Orthopedics
چکیده :
Magnesium phosphate bone cements (MPCs) have adjustable properties like compressive strength, setting time, degradation rate, cytotoxicity, and bone-forming ability, thereby making them useful products in orthopedic sciences dealing with joint replacements and fracture fixation. As with most standard formulations, this fails to meet individual patient needs and thereby contributes to failure rates between 10% and 15%. This article presents an artificial intelligence (AI)-driven framework to optimize the compositions of MPCs by integrating a theoretical database of property variants with patient-specific data covering age, sex, disease history, and different biomechanical considerations. In principle, the deep neural network (DNN) is chosen for its superior ability to deal with the complexity of relationships with multiple outputs. Furthermore, cement design can be such that it benefits from reduced chances of failure, fewer revisions, and increased bone regeneration. Optimization strategies, GPU-accelerated computing and Bayesian hyperparameter tuning, are outlined for the scalability and accurate implementation of such a framework. This would not only capitalize on AI-supported robotic surgery and personalized treatment plans, but it is, more importantly, promising future prospects for global healthcare like in Iran, which would be ready to consume such high demand in orthopedic requirements.
لیست مقالات
لیست مقالات بایگانی شده
Evaluating AI Diagnostic Tools for Use in Remote Medical Settings
Zahra Abiri
Comparative Analysis of U-Net and U-Net (Xception) for CT-Based Segmentation of Target Volume and Organs At-Risk in Left Breast Cancer
Hajar Ahmadi - Azimeh NV Dehkordi - Farhad Azimifar - Seied Rabi Mahdavi - Mahnaz Roayaei
Integrating smart card data and environmental factors in public transportation management: A machine learning-based framework for Mashhad
Shariat Radfar - Hamidreza Koosha - Ali Gholami - Atefeh Amindoust
Applications of Artificial Intelligence in Remote Diagnosis and Treatment in Healthcare
Mina Pourmbarak Mahanaie - Fatemeh Ansari
نقش شهرسازی در بهینهسازی شبکههای توزیع انرژی در مناطق شهری: مطالعه موردی منطقه 22 شهر تهران
فرشته احمدی - فرشته یمینی نجف آبادی
A Comparative Study of Emotion Detection Methods Using NLP Techniques on Sentiment140 and IMDb Datasets
Bahar Asgari - Hamid Rastegari - Vahid Nejati
نقش انرژیهای نو در توسعه هوشمند و پایدار شهری
زهرا حسنی - فرشته احمدی
Enhanced Frequency Regulation in Islanded Microgrids Using a Machine Learning-Assisted Linear-Quadratic Regulator
Soheil Ebrahimian - Hossein Shahinzadeh - Hamed Nafisi - Mahtab Bagheri - Majid Moazzami - Zohreh Azani
مقایسه کارایی کنترلهای فازی و PID در کاهش ریپل و نوسانات ناخواسته در کنترل رباتهای دو لینک انعطافپذیر
مصطفی مکی شهرضایی - عباس چترائی
حفاظت فرکانس در ریزشبکه های جزیره ای در برابر اغتشاشات وارده به کمک کنترل کننده بهینه شده با الگوریتم ژنتیک
محسن دلفانی - حمیدرضا بهمنی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.4