0% Complete
صفحه اصلی
/
International Conference on Artificial Intelligence; City, Industry and Health
AI-Powered Optimization of Magnesium Phosphate Bone Cements for Patient-Specific Orthopedic Outcomes
نویسندگان :
Mehran Shafiei
1
Mohamad Shahgholi
2
1- Department of Mechanical Engineering, Na.C., Islamic Azad University, Najafabad, Iran
2- Department of Mechanical Engineering, Na.C., Islamic Azad University, Najafabad, Iran
کلمات کلیدی :
Artificial Intelligence،Machine Learning،Magnesium Phosphate Bone Cements،Patient-Specific Design،Personalized Orthopedics
چکیده :
Magnesium phosphate bone cements (MPCs) have adjustable properties like compressive strength, setting time, degradation rate, cytotoxicity, and bone-forming ability, thereby making them useful products in orthopedic sciences dealing with joint replacements and fracture fixation. As with most standard formulations, this fails to meet individual patient needs and thereby contributes to failure rates between 10% and 15%. This article presents an artificial intelligence (AI)-driven framework to optimize the compositions of MPCs by integrating a theoretical database of property variants with patient-specific data covering age, sex, disease history, and different biomechanical considerations. In principle, the deep neural network (DNN) is chosen for its superior ability to deal with the complexity of relationships with multiple outputs. Furthermore, cement design can be such that it benefits from reduced chances of failure, fewer revisions, and increased bone regeneration. Optimization strategies, GPU-accelerated computing and Bayesian hyperparameter tuning, are outlined for the scalability and accurate implementation of such a framework. This would not only capitalize on AI-supported robotic surgery and personalized treatment plans, but it is, more importantly, promising future prospects for global healthcare like in Iran, which would be ready to consume such high demand in orthopedic requirements.
لیست مقالات
لیست مقالات بایگانی شده
A new method for calculating maximum solubility in solid state with AI: the case study of the Al-Zr system
Saeid Jabbarzare
Integrating smart card data and environmental factors in public transportation management: A machine learning-based framework for Mashhad
Shariat Radfar - Hamidreza Koosha - Ali Gholami - Atefeh Amindoust
Enhancing Grid Resilience through PMU and WAMS Integration: Challenges, Efficiency, and Future Outlook
Shohreh Azani - Hossein Shahinzadeh - Hamed Nafisi - Majid Moazzami - Ehsan Etemadnia - Hossein Askarian-Abyaneh
The Evolution of Smart Grids: Decentralization, Communication, and Economic Impact
Saiedeh Mehrabani-Najafabadi - Hossein Shahinzadeh - Hamed Nafisi - Shohreh Azani - Ehsan Etemadnia - Ali Karimi
بهینه سازی عملکرد سنسورهای مگنتومیتر سه محوره حساس برای تشخیص جریانهای الکتریکی بسیار ضعیف در پنل های خورشیدی
سعید جعفری - نجمه چراغی شیرازی
Explainability as a Learning Tool: Leveraging Transparent AI to Foster Self-Regulated Learning in Smart Education Environments
Maryam Nooraei Abadeh - Shohreh Ajoudanian
Self-Adapting Urban Digital Twins: A Cost-Effective Optimization Approach for Long-Term Infrastructure Management
Shohreh Ajoudanian - Maryam Nooraei Abadeh - Hamid Reza Aboutalebi
Automated Metaphor Identification: Applying Artificial Intelligence to MIP for detecting Emotion-Related Conceptual Metaphors in Philip Caputo’s A Rumor of War
Parivash Esmaeili
GIS-Based Data Analysis and Optimization: Enhancing Electricity Distribution Operations
Bahar Assarzadegan - Ali Yousefi
نقش شهرسازی در بهینهسازی شبکههای توزیع انرژی در مناطق شهری: مطالعه موردی منطقه 22 شهر تهران
فرشته احمدی - فرشته یمینی نجف آبادی
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.0.1