0% Complete
صفحه اصلی
/
International Conference on Artificial Intelligence; City, Industry and Health
Comparative Analysis of U-Net and U-Net (Xception) for CT-Based Segmentation of Target Volume and Organs At-Risk in Left Breast Cancer
نویسندگان :
Hajar Ahmadi
1
Azimeh NV Dehkordi
2
Farhad Azimifar
3
Seied Rabi Mahdavi
4
Mahnaz Roayaei
5
1- Department of Biomedical Engineering, Isf.C., Islamic Azad University, Isfahan, Iran, ahmadierfane@yahoo.com
2- Department of Computer Engineering, Na.C., Islamic Azad University, Najafabad, Iran, nourizadeh@iau.ir
3- Department of Biomedical Engineering, Isf.C., Islamic Azad University, Isfahan, Iran, f.azimifar@khisf.ac.ir
4- 1. Department of Medical Physics and Radio-Oncology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran, srmahdavi@hotmail.com .2. d2 Radiation Biology Research Center, Iran University of Medical Science, Tehran, Iran, srmahdavi@hotmail.com
5- Department of Radiation Oncology, Omid Hospital, Esfahan University of Medical Sciences, Isfahan, Iran, roayaeimahnaz@gmail.com
کلمات کلیدی :
Breast Cancer،Radiotherapy treatment Planning،Segmentation،U-Net،Xception
چکیده :
Accurate segmentation of anatomical structures in breast cancer imaging is crucial for effective diagnosis and treatment planning. This study investigates the performance of U-Net and a novel U-Net variant that incorporates the Xception architecture as an encoder, aiming to enhance segmentation accuracy and efficiency. We conducted a comprehensive evaluation of both models using a diverse dataset, focusing on key metrics such as Dice similarity score, global accuracy, and prediction time. The U-Net model achieved a mean Dice score of 0.7434 with a global accuracy of 0.95109, demonstrating strong performance in segmenting structures such as the "Lung Left" and "Skin." However, the approach utilizing Xception significantly improved overall performance, yielding a mean Dice score of 0.78299 and a remarkable global accuracy of 0.98335, particularly excelling in clearly defined regions. both models facing challenges with the "GTV" class. This research underscores the potential of integrating advanced deep learning techniques in medical imaging, offering valuable insights for developing efficient tools to support oncological diagnostics and treatment strategies.
لیست مقالات
لیست مقالات بایگانی شده
A Review of Machine Learning Algorithms for Urban Air Pollution Prediction
Neda Chatraei Azizabadi - Nasim Noorafza
Self-Adapting Urban Digital Twins: A Cost-Effective Optimization Approach for Long-Term Infrastructure Management
Shohreh Ajoudanian - Maryam Nooraei Abadeh - Hamid Reza Aboutalebi
پیاده سازی شتاب دهنده شبکه های عصبی کانولوشن بر روی FPGA
احسان قربانی - مهدی آمون
Data-Driven Finger Selection for Nailfold Capillaroscopy in SLE Using Unsupervised Learning and Diagnostic Scoring
Habibollah Jafari - Abdolamir Karbalaie
Economic evaluation of energy reduction in smart buildings using wireless sensor networks
Hussein Asaad Shakir Al-Khalaf - Rahmat Aazami - Mohammadamin Shirkhani
Analyzing Symptom Patterns of COVID 19 Using Apriori Association Rule Mining
Hasti Mokhtari Karchegani - Homa Movahednejad - Mahdi Sharifi
تحلیل مقایسهای اینورترهای خورشیدی: بررسی تأثیر شرایط محیطی، هزینه بر عملکرد و راندمان سامانههای فتوولتائیک
علی فرج زاده - مجید محمدیان - امین علیان - محمد جبیری
Long-term Prediction of Coronary Artery Disease Using Logistic Regression
Koosha Mardasi - Nasim Noorafza
PIMA: Power Imbalance Management Agent as a Distributed Supply Chain Management System
Paniz MohsenNia - Saeed Kafshdouzzadeh - Ehsan Shahi - Amirreza Khanzadeh Khaneqah - Alireza Fereidunian
کاربرد مدل های بهینه سازی انرژی و اثرات ناشی از آن برای تاسیسات شبکه های توزیع برق یزد
حسن شایق - مجتبی طواری - جابر ابراهیمی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.6.0