0% Complete
صفحه اصلی
/
International Conference on Artificial Intelligence; City, Industry and Health
Comparative Analysis of U-Net and U-Net (Xception) for CT-Based Segmentation of Target Volume and Organs At-Risk in Left Breast Cancer
نویسندگان :
Hajar Ahmadi
1
Azimeh NV Dehkordi
2
Farhad Azimifar
3
Seied Rabi Mahdavi
4
Mahnaz Roayaei
5
1- Department of Biomedical Engineering, Isf.C., Islamic Azad University, Isfahan, Iran, ahmadierfane@yahoo.com
2- Department of Computer Engineering, Na.C., Islamic Azad University, Najafabad, Iran, nourizadeh@iau.ir
3- Department of Biomedical Engineering, Isf.C., Islamic Azad University, Isfahan, Iran, f.azimifar@khisf.ac.ir
4- 1. Department of Medical Physics and Radio-Oncology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran, srmahdavi@hotmail.com .2. d2 Radiation Biology Research Center, Iran University of Medical Science, Tehran, Iran, srmahdavi@hotmail.com
5- Department of Radiation Oncology, Omid Hospital, Esfahan University of Medical Sciences, Isfahan, Iran, roayaeimahnaz@gmail.com
کلمات کلیدی :
Breast Cancer،Radiotherapy treatment Planning،Segmentation،U-Net،Xception
چکیده :
Accurate segmentation of anatomical structures in breast cancer imaging is crucial for effective diagnosis and treatment planning. This study investigates the performance of U-Net and a novel U-Net variant that incorporates the Xception architecture as an encoder, aiming to enhance segmentation accuracy and efficiency. We conducted a comprehensive evaluation of both models using a diverse dataset, focusing on key metrics such as Dice similarity score, global accuracy, and prediction time. The U-Net model achieved a mean Dice score of 0.7434 with a global accuracy of 0.95109, demonstrating strong performance in segmenting structures such as the "Lung Left" and "Skin." However, the approach utilizing Xception significantly improved overall performance, yielding a mean Dice score of 0.78299 and a remarkable global accuracy of 0.98335, particularly excelling in clearly defined regions. both models facing challenges with the "GTV" class. This research underscores the potential of integrating advanced deep learning techniques in medical imaging, offering valuable insights for developing efficient tools to support oncological diagnostics and treatment strategies.
لیست مقالات
لیست مقالات بایگانی شده
Data-Driven Finger Selection for Nailfold Capillaroscopy in SLE Using Unsupervised Learning and Diagnostic Scoring
Habibollah Jafari - Abdolamir Karbalaie
مروری بر سیستم مدیریت انرژی تجدیدپذیر ترکیبی مبتنی بر انرژی های بادی و خورشیدی
احسان آقاباباگلی
Ethical Challenges of Future Schools with the Application of Artificial Intelligence
Fereshteh Karimi - Mahbobe Hojjati
نقش اقتصادی یراق کمربندی در بهسازی سکوی تابلوها و ترانسفورماتورهای هوایی و شبکه های هوایی
ابراهیم گوگونانی - حمیدرضا شهبازی - محسن سلیمی - متین گوگونانی - احمد آقاجانی
Automated Metaphor Identification: Applying Artificial Intelligence to MIP for detecting Emotion-Related Conceptual Metaphors in Philip Caputo’s A Rumor of War
Parivash Esmaeili
Evaluating AI Diagnostic Tools for Use in Remote Medical Settings
Zahra Abiri
Simulation of the Effect of Combining LFC and AVR in a Thermal Power Plant With Reheat Turbine
S. Mohammadali Zanjani - Majid Moazzami - Majid Dehghani - Farhad Faghani - Ghazanfar Shahgholian
A multi-objective mathematical model to optimize the consumption of electric power in the N.I.O.P.D.C
Forough Hamidizadeh - Atefeh Amindoust - Seyed Mohammadali Zanjani - Alireza Sanei
نقش انرژیهای نو در توسعه هوشمند و پایدار شهری
زهرا حسنی - فرشته احمدی
Intelligent Tracking of a Combine Harvester by an Autonomous Tractor-Trailer in Crop Harvesting Operations
Khoshnam Shojaei
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.0.1