0% Complete
صفحه اصلی
/
International Conference on Artificial Intelligence; City, Industry and Health
Comparative Analysis of U-Net and U-Net (Xception) for CT-Based Segmentation of Target Volume and Organs At-Risk in Left Breast Cancer
نویسندگان :
Hajar Ahmadi
1
Azimeh NV Dehkordi
2
Farhad Azimifar
3
Seied Rabi Mahdavi
4
Mahnaz Roayaei
5
1- Department of Biomedical Engineering, Isf.C., Islamic Azad University, Isfahan, Iran, ahmadierfane@yahoo.com
2- Department of Computer Engineering, Na.C., Islamic Azad University, Najafabad, Iran, nourizadeh@iau.ir
3- Department of Biomedical Engineering, Isf.C., Islamic Azad University, Isfahan, Iran, f.azimifar@khisf.ac.ir
4- 1. Department of Medical Physics and Radio-Oncology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran, srmahdavi@hotmail.com .2. d2 Radiation Biology Research Center, Iran University of Medical Science, Tehran, Iran, srmahdavi@hotmail.com
5- Department of Radiation Oncology, Omid Hospital, Esfahan University of Medical Sciences, Isfahan, Iran, roayaeimahnaz@gmail.com
کلمات کلیدی :
Breast Cancer،Radiotherapy treatment Planning،Segmentation،U-Net،Xception
چکیده :
Accurate segmentation of anatomical structures in breast cancer imaging is crucial for effective diagnosis and treatment planning. This study investigates the performance of U-Net and a novel U-Net variant that incorporates the Xception architecture as an encoder, aiming to enhance segmentation accuracy and efficiency. We conducted a comprehensive evaluation of both models using a diverse dataset, focusing on key metrics such as Dice similarity score, global accuracy, and prediction time. The U-Net model achieved a mean Dice score of 0.7434 with a global accuracy of 0.95109, demonstrating strong performance in segmenting structures such as the "Lung Left" and "Skin." However, the approach utilizing Xception significantly improved overall performance, yielding a mean Dice score of 0.78299 and a remarkable global accuracy of 0.98335, particularly excelling in clearly defined regions. both models facing challenges with the "GTV" class. This research underscores the potential of integrating advanced deep learning techniques in medical imaging, offering valuable insights for developing efficient tools to support oncological diagnostics and treatment strategies.
لیست مقالات
لیست مقالات بایگانی شده
مدل تئوری بازی شبکه هوشمند به منظور مدیریت سمت تقاضا
حسن استوار - مژده حیدریان اصل
بهینه سازی عملکرد سنسورهای مگنتومیتر سه محوره حساس برای تشخیص جریانهای الکتریکی بسیار ضعیف در پنل های خورشیدی
سعید جعفری - نجمه چراغی شیرازی
Personalizing Large Language Models: A Deep Dive into Adaptation Strategies
Negin Dehkhoda - Hamid Rastagari
A multi-objective mathematical model to optimize the consumption of electric power in the N.I.O.P.D.C
Forough Hamidizadeh - Atefeh Amindoust - Seyed Mohammadali Zanjani - Alireza Sanei
Simulation and Analysis of Energy Consumption Reduction Using Event-Triggered Fault-Tolerant Control
Fatemeh Gholami - Mahnaz Hashemi - Ghazanfar Shahgholian
Investigating the impact of anti-reflective coatings on enhancing the efficiency of InAlGaP solar cells
Shokoufeh Rasan - Zahra Alaei Vernosfaderani - Mehdi Riahinasab - S. Mohammadali Zanjani
Long-term Prediction of Coronary Artery Disease Using Logistic Regression
Koosha Mardasi - Nasim Noorafza
Economic Dispatch of Microgrid with Renewable DGs
Kiarash Pourramezani - Hamid Reza Baghaee - Gevork B. Gharehpetian
حفاظت فرکانس در ریزشبکه های جزیره ای در برابر اغتشاشات وارده به کمک کنترل کننده بهینه شده با الگوریتم ژنتیک
محسن دلفانی - حمیدرضا بهمنی
Intelligent food packaging with modern food technology and artificial intelligence field
Aazam Aarabi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.4