0% Complete
صفحه اصلی
/
ششمین کنفرانس بین المللی بهینه سازی مصرف انرژی الکتریکی
Enhanced Frequency Regulation in Islanded Microgrids Using a Machine Learning-Assisted Linear-Quadratic Regulator
نویسندگان :
Soheil Ebrahimian
1
Hossein Shahinzadeh
2
Hamed Nafisi
3
Mahtab Bagheri
4
Majid Moazzami
5
Zohreh Azani
6
1- دانشگاه آزاد اسلامی واحد نجف آباد
2- دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران)
3- دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران)
4- دانشگاه آزاد اسلامی واحد نجف آباد
5- دانشگاه آزاد اسلامی واحد نجف آباد
6- دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران)
کلمات کلیدی :
Islanded Microgrids،Frequency Regulation،Machine Learning،Linear-Quadratic Regulator،Renewable Energy،Uncertainty،Energy Storage
چکیده :
The stability of frequency in islanded microgrids is highly sensitive to fluctuations in generation resources and load demand. Ensuring effective frequency regulation in such autonomous systems is critical, particularly in the presence of renewable energy sources and uncertain operating conditions. This paper presents an enhanced frequency control strategy that integrates a Machine Learning-Assisted Linear-Quadratic Regulator (ML-LQR) to optimize the dispatch of generation units while mitigating frequency deviations. The proposed approach leverages a machine learning model to dynamically adjust the penalty coefficients of the LQR controller, improving its adaptability to varying system conditions. By incorporating predictive insights from historical data, the method enhances frequency regulation even under uncertain scenarios. The effectiveness of the proposed ML-LQR strategy is validated through simulations on an islanded microgrid under normal and disturbance conditions. The results demonstrate that integrating machine learning significantly improves frequency stability, reduces control stress, and optimally compensates for variations in generation and load conditions. Additionally, a comprehensive analysis of penalty coefficient variations highlights the adaptive capabilities of the proposed approach.
لیست مقالات
لیست مقالات بایگانی شده
Analyzing Symptom Patterns of COVID 19 Using Apriori Association Rule Mining
Hasti Mokhtari Karchegani - Homa Movahednejad - Mahdi Sharifi
Ethical Challenges of Future Schools with the Application of Artificial Intelligence
Fereshteh Karimi - Mahbobe Hojjati
A Review on Optimizing Concrete Production Using Artificial Intelligence: Challenges and Opportunities
Behrooz Foroughi - Leyla Adelzade.saadabadi
روش ترکیبی شبیه سازی شده جدید مبتنی بر منطق فازی برای ردیابی نقطه توان ماکزیمم سیستم های فتوولتاییک در شرایط جوی مختلف
محسن دلفانی - حمیدرضا بهمنی
Impact of Using ChatGPT as an AI Tool on Speaking Complexity, Accuracy, and Fluency Among Iranian EFL Learners
Samira Beheshti - Omid Tabatabaei - Hadi Salehi
Artificial Intelligence in the Diagnosis and Prognosis of Neurodegenerative Disorders: A Systematic Review of Algorithms, Challenges, and Future Directions
Donya Forghani - Mohamad Shahgholi
The impact of smart transportation on the mental health of urban drivers (Case study: District 22, Tehran)
Somayeh Valikhani - Fereshteh Ahmadi - Amir hosein Shabani - Mohammad Askarian
Applications of Artificial Intelligence in Education: A Comprehensive Review (2015-2025)
Naser Khani - Mojgan Bahrami - Seid Mohammad Reza Mirahmadi
معضلات توسعه دستگاه های استخراج رمزارز در کاهش بهینه سازی مصرف انرژی
احسان آقاباباگلی
An Electric Vehicle Parking Model for Optimization of Power Fluctuation Smoothing in Distribution Systems Equipped with Renewable Energy Resources
محسن جنتی
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.0.1