0% Complete
صفحه اصلی
/
ششمین کنفرانس بین المللی بهینه سازی مصرف انرژی الکتریکی
Application of Artificial Intelligence for Distribution Network Reconfiguration by Using D3QN Algorithm
نویسندگان :
Amirhossein Ghaemipour
1
Habib Rajabi Mashhadi
2
Seyed Hossein Mostafavi
3
1- دانشگاه فردوسی مشهد
2- دانشگاه فردوسی مشهد
3- دانشگاه فردوسی مشهد
کلمات کلیدی :
Smart Distribution Network،Reconfiguration،Reinforcement Learning،Dueling Double Deep Q network (D3QN) Algorithm
چکیده :
Considering that the electricity industry is one of the most important industries in the world, it is necessary for electricity operators to seek to create conditions for the best performance in this industry. There are different solutions for this task. Distribution network Reconfiguring is one of the most cost-effective methods for electricity companies. Given the advancement of technology and methods in artificial intelligence, we use this structure in this article. Therefore, in this article, we focused on distribution network reconfiguring using the Dueling Double Deep Q Network (D3QN) algorithm. The proposed method has been tested and investigated on an IEEE 33-bus distribution network with the objective function of minimizing power losses and minimizing the average voltage deviation of the buses.
لیست مقالات
لیست مقالات بایگانی شده
A Review of Machine Learning Methods for Autism Diagnosis
Ali Emami - Nasim Noorafza
Self-Adapting Urban Digital Twins: A Cost-Effective Optimization Approach for Long-Term Infrastructure Management
Shohreh Ajoudanian - Maryam Nooraei Abadeh - Hamid Reza Aboutalebi
The Role of Artificial Intelligence in EFL Writing: A Critical Review of Tools, Methods, and Outcomes
Dr. Sarallah Jafaripour - Dr. Omid Tabatabaei
Energy Imbalance: Challenges, Opportunities, and Solutions
Ali Hosseinzadeh - Mohamadreza Hashemi - Mahsa Hamidi - Mehdi Oloomi Bayegi - Mostafa Eidiani
مقایسه کارایی کنترلهای فازی و PID در کاهش ریپل و نوسانات ناخواسته در کنترل رباتهای دو لینک انعطافپذیر
مصطفی مکی شهرضایی - عباس چترائی
An AI-Based Approach for Predicting and Optimizing Production Line Settings with a Focus on OEE
Nazila Adabavazeh - Mehrdad Nikbakht - Atefeh Amindoust
Reconfigurable Pulse Charge BMS with Pre-charge Capability for Li-Ion Energy Storage Systems (ESSs)
Amirhossein Rahimian Zarif - Amin Kazemi - Yasser Mafinejad
A new method for calculating maximum solubility in solid state with AI: the case study of the Al-Zr system
Saeid Jabbarzare
Applications of Artificial Intelligence in Food Quality and Safety Control
Nasrin Hesami - Hadiseh Dehghan
Long-term Prediction of Coronary Artery Disease Using Logistic Regression
Koosha Mardasi - Nasim Noorafza
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.6.0