0% Complete
صفحه اصلی
/
International Conference on Artificial Intelligence; City, Industry and Health
A new method for calculating maximum solubility in solid state with AI: the case study of the Al-Zr system
نویسندگان :
Saeid Jabbarzare
1
1- Institute of Manufacturing Engineering and Industrial Technologies, Na.C., Islamic Azad University, Najafabad, Iran
کلمات کلیدی :
Metallurgy،artificial intelligence،zirconium،x-ray diffraction
چکیده :
In the 1920s, Hume-Rothery helped to make the art of metallurgy into a science by the discovery of rules for the prediction of solubility in alloys. Their simplicity and generality made them become one of the most important rules in materials science. In the few decades after Hume-Rothery’s discovery, many researchers have tried to make “corrections” to H-R rules aiming to make them work better in general alloy systems.In the present study, different percentages of zirconium were added to aluminum and X-ray diffraction was obtained from the resulting samples at different milling times. According to the changes in theta angle in X-ray diffraction, the lattice parameter was calculated at different percentages of zirconium and different milling hours. Artificial intelligence can be used to derive a mathematical relationship that represents the changes in the lattice parameter in terms of zirconium percentage and also milling time. The resulting relationship was optimized using the bee colony algorithm, and percentages of zirconium and milling times at which the lattice parameter was maximized were calculated. Finally, these percentages and times were recorded and the best line equation was calculated from them. The final line equation, as a unique relationship, can calculate the time required to achieve the maximum lattice parameter at any percentage of zirconium.
لیست مقالات
لیست مقالات بایگانی شده
جلوگیری از ایجاد تلفات در تجهیزات پستهای برق با کمک تصویر برداری حرارتی
احسان مهرابی
پیاده سازی شتاب دهنده شبکه های عصبی کانولوشن بر روی FPGA
احسان قربانی - مهدی آمون
Artificial Intelligence in the Diagnosis and Prognosis of Neurodegenerative Disorders: A Systematic Review of Algorithms, Challenges, and Future Directions
Donya Forghani - Mohamad Shahgholi
Examining the Role of Artificial Intelligence in Curriculum Development
Mohammad Hossein Kazemi Darafshani - Mahbobe Hojjati
Artificial Intelligence in Finance and Business: Applications in Risk Management and Fraud Detection
Fatemeh Ansari - Mehdi Joudan
Data-Driven Finger Selection for Nailfold Capillaroscopy in SLE Using Unsupervised Learning and Diagnostic Scoring
Habibollah Jafari - Abdolamir Karbalaie
تحلیل فنی و اقتصادی پنل های خورشیدی موجود در بازار و انتخاب پنل مناسب برای شرایط اقلیمی در سطح کشور
ابراهیم گوگونانی - داود طغرایی - مجید ریاحی سامانی - مجتبی مجتبی رحیمی - بابک مهماندوست
Integrating smart card data and environmental factors in public transportation management: A machine learning-based framework for Mashhad
Shariat Radfar - Hamidreza Koosha - Ali Gholami - Atefeh Amindoust
AI-Powered Optimization of Magnesium Phosphate Bone Cements for Patient-Specific Orthopedic Outcomes
Mehran Shafiei - Mohamad Shahgholi
مدیریت مصرف و بهینه سازی انرژی در خانه هوشمند با وجود خودرو برقی وسیستم ذخیره ساز انرژی به همراه پنل فتوولتائیک
سید امید رادی - مهرداد فارسی مدان
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.6.0