0% Complete
صفحه اصلی
/
International Conference on Artificial Intelligence; City, Industry and Health
AI-Driven Solutions for Electricity Fraud Detection: A Data-Centric Approach
نویسندگان :
Fatemeh Alimoradi
1
Zahra Alimoradi
2
S. Mohammadali Zanjani
3
Ghazanfar Shahgholian
4
1- Smart Microgrid Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2- Smart Microgrid Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
3- Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
4- Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
کلمات کلیدی :
Electricity Fraud Detection،SVM،KNN،Machine learning،classification
چکیده :
Electricity fraud detection presents a significant challenge for power distribution companies, as non-technical losses resulting from fraudulent activities adversely affect revenue and operational efficiency. This study presents a machine learning-driven approach for accurately identifying fraudulent electricity consumption patterns. A comprehensive analysis of electricity usage data is conducted using multiple classification models, including Support Vector Machine (SVM), K-Nearest Neighbors (KNN), a Stacking Model integrating SVM, KNN, Random Forest, and Gradient Boosting, as well as a Weighted Model leveraging confidence-based prediction adjustments. Model performance is evaluated using key metrics, including accuracy, precision, recall, F1-score, AUC-ROC, and confusion matrices. The results indicate that the Stacking Model achieves the highest predictive performance, with an AUC-ROC of 1.000, while the Weighted Model effectively balances precision and recall, attaining an F1-score of 0.9909. Furthermore, ROC curves and confusion matrices illustrate each model’s effectiveness in differentiating fraudulent from legitimate customers. The findings of this study culminate in the development of an application designed for real-world deployment, enabling electricity providers to detect and mitigate fraudulent activities.
لیست مقالات
لیست مقالات بایگانی شده
Network Anomaly Detection Using Artificial Intelligence Algorithms
Sajad Balali Dehkordi - Saeed Nasri - Sina Dami
Applications of Artificial Intelligence in Education: A Comprehensive Review (2015-2025)
Naser Khani - Mojgan Bahrami - Seid Mohammad Reza Mirahmadi
A mini-review on machine learning framework for drug delivery applications
S.A. Hassanzadeh_Tabrizi - Mahdie Saheban - Hashim Hamood Jabbar Al-Gburi
AI-Driven Optimization of Energy Efficiency in HVAC Systems through Waste Heat Recovery and Thermal Energy Storage
Sahand Heidary - Rahim Zahedi - Abolfazl Ahmadi
Simulation and Analysis of Energy Consumption Reduction Using Event-Triggered Fault-Tolerant Control
Fatemeh Gholami - Mahnaz Hashemi - Ghazanfar Shahgholian
نقش اقتصادی یراق کمربندی در بهسازی سکوی تابلوها و ترانسفورماتورهای هوایی و شبکه های هوایی
ابراهیم گوگونانی - حمیدرضا شهبازی - محسن سلیمی - متین گوگونانی - احمد آقاجانی
Reconfiguration of Electrical Distribution Systems in the Presence of Distributed Generation Resources Using MINLP
Azadeh Barani - Majid Moazzami - Ghazanfar Shahgholian - Fariborz Haghighatdar
The Application of Artificial Intelligence in Optimizing and Forecasting the Performance of Renewable Energy Systems
Behzad Ghadiri
Customer Churn Prediction in the Telecommunications Industry Using Machine Learning Techniques
Atefeh Ahmadi Jazi - Nasim Noorafza
Explainability as a Learning Tool: Leveraging Transparent AI to Foster Self-Regulated Learning in Smart Education Environments
Maryam Nooraei Abadeh - Shohreh Ajoudanian
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.0.1