0% Complete
صفحه اصلی
/
International Conference on Artificial Intelligence; City, Industry and Health
A Novel Adaptive Fuzzy-Based AI Approach for High-Density Salt-and-Pepper Noise Removal in MRI Images: Applications in Digital Health and Clinical Diagnostics
نویسندگان :
Alireza Naghsh
1
Mohammad Ebadi
2
1- Department of Electrical Engineering, Na.C., Islamic Azad University, Najafabad, Iran
2- Department of Electrical Engineering, Na.C., Islamic Azad University, Najafabad, Iran
کلمات کلیدی :
Artificial intelligence،Digital MRI image،Fuzzy logic،Healthcare،Watermarking
چکیده :
In this study, we present an adaptive weighted fuzzy-based smart method for the removal of salt-and-pepper (SP) noise from digital MRI images, enhancing diagnostic reliability in healthcare applications. The proposed method begins with a watermarking strategy that accurately distinguishes noisy pixels from healthy ones. For each noisy pixel, a neighborhood window is constructed, and the weight of each healthy pixel within the neighborhood is determined using adaptive fuzzy logic system based on the pixel characteristics. Within this window, the noisy pixel is replaced by the weighted average of the healthy pixel values. In high density noise scenarios, where no healthy pixels are present within the window, subsequent noise removal iteration utilize the mean values of previously replaced pixels to determine an appropriate replacement. Evaluations demonstrate the superiority of this method in effectively reducing noise while preserving critical image details, making it particularly suitable for medical imaging applications where precision and clarity are essential. This approach represents a promising advancement in SP noise reduction techniques, paving the way for improved visualization and analysis under high-density noise conditions. The evaluation of the algorithm demonstrates an average of SSIM as 0.9197 and PSNR as 35.88.
لیست مقالات
لیست مقالات بایگانی شده
Artificial Intelligence Techniques in Multiple-Input Multiple-Output Radar Systems
Rouhollah Aghajani
Predictive Modeling of Pollutant Emissions from Biodiesel-diesel Fuel Blends in a Diesel Engine Using Artificial Neural Networks
Alireza Shirneshan
The Role of Artificial Intelligence in EFL Writing: A Critical Review of Tools, Methods, and Outcomes
Dr. Sarallah Jafaripour - Dr. Omid Tabatabaei
نقش اقتصادی یراق کمربندی در بهسازی سکوی تابلوها و ترانسفورماتورهای هوایی و شبکه های هوایی
ابراهیم گوگونانی - حمیدرضا شهبازی - محسن سلیمی - متین گوگونانی - احمد آقاجانی
GIS-Based Data Analysis and Optimization: Enhancing Electricity Distribution Operations
Bahar Assarzadegan - Ali Yousefi
The impact of smart transportation on the mental health of urban drivers (Case study: District 22, Tehran)
Somayeh Valikhani - Fereshteh Ahmadi - Amir hosein Shabani - Mohammad Askarian
Analyzing Symptom Patterns of COVID 19 Using Apriori Association Rule Mining
Hasti Mokhtari Karchegani - Homa Movahednejad - Mahdi Sharifi
Designing Intelligent Therapeutic Cities: A Psychoanalytic Exploration of the Collective Unconscious Through the Integration of Jungian Archetypes and Artificial Intelligence
Fatemeh Orooji - Hamid Saberi
روشهای بهینه وصول مطالبات و ارائه پیشنهادات و راهکارهای اقتصاد مقاومتی برای وصول آن در شرکت توزیع نیروی برق استان یزد
مجتبی طواری - جابر ابراهیمی - حسن شایق
Artificial Intelligence in the Diagnosis and Prognosis of Neurodegenerative Disorders: A Systematic Review of Algorithms, Challenges, and Future Directions
Donya Forghani - Mohamad Shahgholi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.4