0% Complete
صفحه اصلی
/
International Conference on Artificial Intelligence; City, Industry and Health
Analyzing Symptom Patterns of COVID 19 Using Apriori Association Rule Mining
نویسندگان :
Hasti Mokhtari Karchegani
1
Homa Movahednejad
2
Mahdi Sharifi
3
1- Department of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2- Department of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
3- Department of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
کلمات کلیدی :
Association rule mining،Apriori algorithm،COVID-19،Machine learning،Symptom analysis
چکیده :
The COVID-19 crisis has had a profound impact on global health systems, economies, and communities. As healthcare providers faced growing demands and resource constraints, early identification of symptoms and understanding the severity of cases became essential. Artificial intelligence, particularly machine learning, has emerged as a powerful approach in medical data analysis, offering insights that support clinical decision-making. This study applies an association rule mining method, based on the Apriori algorithm, to analyze clinical records of patients diagnosed with COVID-19. These findings highlight the most common indicators of the disease and present a data-driven approach to symptom tracking. By uncovering hidden patterns, the proposed method enables healthcare professionals to better understand symptom correlations and improve response strategies. The results of this research may contribute to more accurate diagnosis, better resource allocation, and more informed treatment planning during infectious disease outbreaks.
لیست مقالات
لیست مقالات بایگانی شده
An Electric Vehicle Parking Model for Optimization of Power Fluctuation Smoothing in Distribution Systems Equipped with Renewable Energy Resources
محسن جنتی
Evaluating AI Diagnostic Tools for Use in Remote Medical Settings
Zahra Abiri
Personalizing Large Language Models: A Deep Dive into Adaptation Strategies
Negin Dehkhoda - Hamid Rastagari
The Evolution of Smart Grids: Decentralization, Communication, and Economic Impact
Saiedeh Mehrabani-Najafabadi - Hossein Shahinzadeh - Hamed Nafisi - Shohreh Azani - Ehsan Etemadnia - Ali Karimi
Comparative Analysis of U-Net and U-Net (Xception) for CT-Based Segmentation of Target Volume and Organs At-Risk in Left Breast Cancer
Hajar Ahmadi - Azimeh NV Dehkordi - Farhad Azimifar - Seied Rabi Mahdavi - Mahnaz Roayaei
مدل تئوری بازی شبکه هوشمند به منظور مدیریت سمت تقاضا
حسن استوار - مژده حیدریان اصل
Impact of Using ChatGPT as an AI Tool on Speaking Complexity, Accuracy, and Fluency Among Iranian EFL Learners
Samira Beheshti - Omid Tabatabaei - Hadi Salehi
The Discourse of Artificial Intelligence and the Fourth Generation of Human Rights
Masoud Raei - Mahsa Khajeh - Mehdi Abdolmaleki
پایش وضعیت آلاینده های زیست محیطی ناشی از مصرف سوخت جایگزین و بررسی اثرات آن بر تولید و راندمان توربین گازی
فرشته صادقی - داوود ثمنی مقدم
Analyzing Symptom Patterns of COVID 19 Using Apriori Association Rule Mining
Hasti Mokhtari Karchegani - Homa Movahednejad - Mahdi Sharifi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.6.0