0% Complete
صفحه اصلی
/
International Conference on Artificial Intelligence; City, Industry and Health
Artificial Intelligence in the Diagnosis and Prognosis of Neurodegenerative Disorders: A Systematic Review of Algorithms, Challenges, and Future Directions
نویسندگان :
Donya Forghani
1
Mohamad Shahgholi
2
1- 1Department of Biomedical Engineering, Na.C., Islamic Azad University, Najafabad, Iran
2- Department of Mechanical Engineering, Na.C., Islamic Azad University, Najafabad, Iran
کلمات کلیدی :
Artificial Intelligence،Deep Learning،Explainable AI (XAI)،Multimodal Data Integration،Neurodegenerative Disorders،brain tumor،multiple sclerosis،Alzheimer،Parkinson
چکیده :
Neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, multiple sclerosis, and brain tumors rank among the most challenging 21st-century health abnormalities. The limitations of traditional diagnostic methods, combined with clinical complexity of the conditions, have grown to direct research attention toward AI-based alternatives. Particularly, machine learning (ML) and deep learning (DL) methods have emerged as excellent candidates for identifying hidden patterns and generating highly accurate predictions. This review evaluates recent research that has utilized artificial intelligence for diagnosing and predicting neurodegenerative diseases. The data used in these studies are magnetic resonance imaging (MRI), positron emission tomography (PET), electroencephalography (EEG), audio files, genetic data, and clinical features. Various algorithms like convolutional neural networks (CNN), long short-term memory (LSTM) networks, generative adversarial networks (GAN), support vector machines (SVM), and hybrid architecture have been employed for processing and analysis of data. Results from some research demonstrate that multimodal models—above all, imaging and non-imaging data combination models—have recorded excellent diagnostic performance, up to 99.47%. However, there are common challenges across many studies including lack of diversity in data, limited model interpretability, and poor external validation. This paper highlights the need to develop transparent, generalizable, and ethical AI systems, and identifies some key future research avenues.
لیست مقالات
لیست مقالات بایگانی شده
A Optimal Design Standalone PV-Battery System for Rural Electrification from Techno-economic Analysis Perspectives: A Case Study from Khorasan Razavi Province
Sina Sajadi - Mohammadreza Fatehi - Mohammadreza Amiri - Seyed hossein Hosseinian
نقش انرژیهای نو در توسعه هوشمند و پایدار شهری
زهرا حسنی - فرشته احمدی
Study and Simulation of Uncertainty Conditions in Load Distribution of a Hybrid Power System with Photovoltaic Renewable Farms
Asghar Sabzevari - Majid Moazzami - Bahador Fani - Ghazanfar Shahgholian - Mahnaz Hashemi
نقش شهرسازی در بهینهسازی شبکههای توزیع انرژی در مناطق شهری: مطالعه موردی منطقه 22 شهر تهران
فرشته احمدی - فرشته یمینی نجف آبادی
The Application of Artificial Intelligence in Optimizing and Forecasting the Performance of Renewable Energy Systems
Behzad Ghadiri
Explainability as a Learning Tool: Leveraging Transparent AI to Foster Self-Regulated Learning in Smart Education Environments
Maryam Nooraei Abadeh - Shohreh Ajoudanian
Intelligent food packaging with modern food technology and artificial intelligence field
Aazam Aarabi
Predictive Modeling of Pollutant Emissions from Biodiesel-diesel Fuel Blends in a Diesel Engine Using Artificial Neural Networks
Alireza Shirneshan
معضلات توسعه دستگاه های استخراج رمزارز در کاهش بهینه سازی مصرف انرژی
احسان آقاباباگلی
Investigating the impact of anti-reflective coatings on enhancing the efficiency of InAlGaP solar cells
Shokoufeh Rasan - Zahra Alaei Vernosfaderani - Mehdi Riahinasab - S. Mohammadali Zanjani
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.0.1