0% Complete
صفحه اصلی
/
International Conference on Artificial Intelligence; City, Industry and Health
Artificial Intelligence in the Diagnosis and Prognosis of Neurodegenerative Disorders: A Systematic Review of Algorithms, Challenges, and Future Directions
نویسندگان :
Donya Forghani
1
Mohamad Shahgholi
2
1- 1Department of Biomedical Engineering, Na.C., Islamic Azad University, Najafabad, Iran
2- Department of Mechanical Engineering, Na.C., Islamic Azad University, Najafabad, Iran
کلمات کلیدی :
Artificial Intelligence،Deep Learning،Explainable AI (XAI)،Multimodal Data Integration،Neurodegenerative Disorders،brain tumor،multiple sclerosis،Alzheimer،Parkinson
چکیده :
Neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, multiple sclerosis, and brain tumors rank among the most challenging 21st-century health abnormalities. The limitations of traditional diagnostic methods, combined with clinical complexity of the conditions, have grown to direct research attention toward AI-based alternatives. Particularly, machine learning (ML) and deep learning (DL) methods have emerged as excellent candidates for identifying hidden patterns and generating highly accurate predictions. This review evaluates recent research that has utilized artificial intelligence for diagnosing and predicting neurodegenerative diseases. The data used in these studies are magnetic resonance imaging (MRI), positron emission tomography (PET), electroencephalography (EEG), audio files, genetic data, and clinical features. Various algorithms like convolutional neural networks (CNN), long short-term memory (LSTM) networks, generative adversarial networks (GAN), support vector machines (SVM), and hybrid architecture have been employed for processing and analysis of data. Results from some research demonstrate that multimodal models—above all, imaging and non-imaging data combination models—have recorded excellent diagnostic performance, up to 99.47%. However, there are common challenges across many studies including lack of diversity in data, limited model interpretability, and poor external validation. This paper highlights the need to develop transparent, generalizable, and ethical AI systems, and identifies some key future research avenues.
لیست مقالات
لیست مقالات بایگانی شده
اثر تصحیح خطای مثبت ترانسفورماتورهای ولتاژ خازنی بر بهینهسازی مصرف انرژی و کاهش هزینههای برق در شرکت فولاد خوزستان
علی سالم دزفولی - محمود جورابیان - ناصر حمیدی - مجتبی آزادی اردکانی
Artificial Intelligence in the Diagnosis and Prognosis of Neurodegenerative Disorders: A Systematic Review of Algorithms, Challenges, and Future Directions
Donya Forghani - Mohamad Shahgholi
A Comparative Study of Emotion Detection Methods Using NLP Techniques on Sentiment140 and IMDb Datasets
Bahar Asgari - Hamid Rastegari - Vahid Nejati
Data-Driven Finger Selection for Nailfold Capillaroscopy in SLE Using Unsupervised Learning and Diagnostic Scoring
Habibollah Jafari - Abdolamir Karbalaie
Application of ANN artificial network in slope behavior evaluation using machine learning technique
Marziyeh Tourani - Hadi Bahadori
Optimization of Electric Vehicle Charging Station Placement Using V2G Technology and Intelligent Algorithms
ABBAS SEIF - Hamid Radmanesh
AI-Driven Solutions for Electricity Fraud Detection: A Data-Centric Approach
Fatemeh Alimoradi - Zahra Alimoradi - S. Mohammadali Zanjani - Ghazanfar Shahgholian
A Comprehensive Review on the Optimization of Multilayer Optical Thin Films Using Artificial Intelligence and Deep Q-Learning
Mina Neghabi - Mehdi Zadsar
A new method for calculating maximum solubility in solid state with AI: the case study of the Al-Zr system
Saeid Jabbarzare
A Optimal Design Standalone PV-Battery System for Rural Electrification from Techno-economic Analysis Perspectives: A Case Study from Khorasan Razavi Province
Sina Sajadi - Mohammadreza Fatehi - Mohammadreza Amiri - Seyed hossein Hosseinian
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.4