0% Complete
صفحه اصلی
/
International Conference on Artificial Intelligence; City, Industry and Health
The Application of Artificial Intelligence in Optimizing and Forecasting the Performance of Renewable Energy Systems
نویسندگان :
Behzad Ghadiri
1
1- Faculty of Art, Architecture, urban planning, Najafabad Branch, Islamic Azad University, Najafabad, Iran
کلمات کلیدی :
Artificial Intelligence،Deep Learning،Renewable Energy،Energy Forecasting
چکیده :
With the growing global demand for energy and the environmental consequences of fossil fuel consumption, the utilization of renewable energy sources has become essential. However, the intermittent and complex nature of resources such as solar irradiance and wind poses significant challenges for accurate prediction and optimal utilization. This paper proposes a three-stage framework using advanced Artificial Intelligence (AI) algorithms—particularly Artificial Neural Networks (ANNs), Machine Learning (ML) models, and Long Short-Term Memory (LSTM) networks—to forecast and optimize the performance of photovoltaic (PV) and wind energy systems. In the first stage, meteorological, thermophysical, and geometric data were collected and pre-processed to identify key influencing variables. Subsequently, prediction models such as Support Vector Regression (SVR), XGBoost, CatBoost, and hybrid models like BiLSTM and Voting-Average were employed for forecasting solar irradiance and energy output. Results indicate that deep and ensemble models offer superior prediction accuracy compared to traditional methods, effectively capturing complex temporal patterns in the data. Furthermore, the Non-dominated Sorting Genetic Algorithm II (NSGA-II) was applied for multi-objective optimization in PV/T system design. Emphasizing the integration of AI with renewable energy technologies, this study demonstrates that intelligent approaches can significantly enhance efficiency, reliability, and sustainability in modern energy systems.
لیست مقالات
لیست مقالات بایگانی شده
Distribution Network Reconfiguration in the Presence of Distribution Generation Using Deep Reinforcement Learning
Amirhossein Ghaemipour - Habib Rajabi Mashhadi - Seyed Hossein Mostafavi
مدل تئوری بازی شبکه هوشمند به منظور مدیریت سمت تقاضا
حسن استوار - مژده حیدریان اصل
Long-term Prediction of Coronary Artery Disease Using Logistic Regression
Koosha Mardasi - Nasim Noorafza
Enhancing Multilingual Spam Detection Using Machine Learning and Synthetic Data Augmentation
Mohamad Hosein Ghojavand - Hamid Rastegari
Personalizing Large Language Models: A Deep Dive into Adaptation Strategies
Negin Dehkhoda - Hamid Rastagari
پیاده سازی شتاب دهنده شبکه های عصبی کانولوشن بر روی FPGA
احسان قربانی - مهدی آمون
Enhancing Grid Resilience through PMU and WAMS Integration: Challenges, Efficiency, and Future Outlook
Shohreh Azani - Hossein Shahinzadeh - Hamed Nafisi - Majid Moazzami - Ehsan Etemadnia - Hossein Askarian-Abyaneh
Applications of Artificial Intelligence in Remote Diagnosis and Treatment in Healthcare
Mina Pourmbarak Mahanaie - Fatemeh Ansari
مروری بر سیستم مدیریت انرژی تجدیدپذیر ترکیبی مبتنی بر انرژی های بادی و خورشیدی
احسان آقاباباگلی
Study and Simulation of Uncertainty Conditions in Load Distribution of a Hybrid Power System with Photovoltaic Renewable Farms
Asghar Sabzevari - Majid Moazzami - Bahador Fani - Ghazanfar Shahgholian - Mahnaz Hashemi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.6.0