0% Complete
صفحه اصلی
/
ششمین کنفرانس بین المللی بهینه سازی مصرف انرژی الکتریکی
Optimization of Electric Vehicle Charging Station Placement Using V2G Technology and Intelligent Algorithms
نویسندگان :
ABBAS SEIF
1
Hamid Radmanesh
2
1- دانشگاه آزاد اسلامی واحد تهران مرکزی
2- دانشگاه ازاد تهران مرکز
کلمات کلیدی :
Electric Vehicles،Vehicle-to-Grid،Smart Grids،Genetic Algorithm
چکیده :
Electric vehicles (EVs) are increasingly recognized as a crucial component of future sustainable energy systems due to their potential to reduce greenhouse gas emissions and dependence on fossil fuels. However, integrating EV charging stations into existing distribution networks poses challenges related to voltage stability, power losses, and peak demand management. The primary gap in the literature concerns optimizing the location of EV charging stations and their interaction with power grids, particularly with Vehicle-to-Grid (V2G) technology. This study proposes a novel approach for optimizing the placement of EV charging stations within a standard IEEE 69-bus distribution system, incorporating V2G capabilities. The objective is to minimize power losses and improve voltage profiles while leveraging the energy stored in EV batteries during peak demand periods. Using genetic algorithms (GA) and particle swarm optimization (PSO), two scenarios are evaluated: the presence and absence of V2G-enabled vehicles. The numerical analysis reveals that V2G integration significantly reduces network losses by 12.5% and enhances voltage stability across the grid. Furthermore, the PSO algorithm demonstrates a faster convergence and better voltage profile improvement compared to GA. These findings highlight the critical role of EV parking stations in future smart grids and offer practical insights for urban planners and utility managers to optimize distribution networks with rising EV adoption.
لیست مقالات
لیست مقالات بایگانی شده
Evaluating AI Diagnostic Tools for Use in Remote Medical Settings
Zahra Abiri
Customer Churn Prediction in the Telecommunications Industry Using Machine Learning Techniques
Atefeh Ahmadi Jazi - Nasim Noorafza
Personalizing Large Language Models: A Deep Dive into Adaptation Strategies
Negin Dehkhoda - Hamid Rastagari
Energy-Efficient Intelligent Platforms for Public Safety Radio Networks: Optimizing Electrical Energy Consumption in Emergency Communication Systems
Mohammad Asgari
Examining the Role of Artificial Intelligence in Curriculum Development
Mohammad Hossein Kazemi Darafshani - Mahbobe Hojjati
تبیین جامعه شناختی مصرف انرژی الکتریکی (بازنگری سامانمند پژوهش های پیرامون مصرف انرژی الکتریکی)
کمال سعیدی - مژگان سعیدی
مدل تئوری بازی شبکه هوشمند به منظور مدیریت سمت تقاضا
حسن استوار - مژده حیدریان اصل
The Discourse of Artificial Intelligence and the Fourth Generation of Human Rights
Masoud Raei - Mahsa Khajeh - Mehdi Abdolmaleki
Forecasting Electricity Price Spikes in Competitive Markets Using a Hybrid Deep Learning Framework with SHAP and Grey Wolf Optimization
Hossein Shahinzadeh - Hamed Nafisi - Mahtab Bagheri - Saiedeh Mehrabani-Najafabadi - Sudeep Tanwar - Francisco Jurado
Explainability as a Learning Tool: Leveraging Transparent AI to Foster Self-Regulated Learning in Smart Education Environments
Maryam Nooraei Abadeh - Shohreh Ajoudanian
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.0.1